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Abstract—Determination of ligand binding pathways is an
important factor to predict drug efficacy in drug discovery.
Ligand-receptor binding involves the motion of many degrees of
freedom, which can make binding pathways difficult to discover
with traditional methods. Interactive molecular docking tools can
allow users to explore the high dimensional energy landscape
of the ligand-receptor system with rigid molecular models to
determine low energy ligand states and pathways to binding. To
introduce the effect of ligand flexibility in molecular docking
with rigid body models, we use ensembles of distinct ligand
conformation states that can be swapped during exploration. Our
method emulates ligand flexibility effects in rigid body docking at
no extra computational cost. Our automated method simulates
user search performance with a path optimization algorithm.
We find that allowing the algorithm to include different ligand
conformations in its search for states of lower energy can result
in optimized low energy pathways with reduced search times in
difficult areas near energy barriers. This method can be adapted
to include molecular flexibility effects in interactive rigid body
molecular docking running in commodity hardware, such as
molecular docking games.

Index Terms—molecular docking, receptor-ligand binding, mo-
tion planning, ligand flexibility

I. INTRODUCTION

Ligand binding pathways are biologically feasible lowest
energy routes for a free ligand to reach the ligand-receptor
bound state in the high-dimensional energy landscape of a
multi-molecular system. Determining ligand binding pathways
is a central problem in drug discovery. The efficacy of a drug
may depend not only on the affinity of the ligand-receptor
interaction, but also on the time scales involved with binding
events and on the molecular conformational changes that occur
during binding [1], [2].

The large number of degrees of freedom of the molecular
system makes the search for ligand binding pathways com-
putationally expensive [3]. Therefore, to perform computa-
tionally efficient global explorations of the interaction energy

landscape of receptor and ligand, the degrees of freedom
of the problem need to be reduced. Interactive molecular
docking programs achieve this by keeping ligands and recep-
tors rigid, which reduces the computational cost of energy
calculations [4]. While the problem is oversimplified by fixing
the internal degrees of freedom of the molecules, much can
be gained by adding a human operator who is able to use
sensorial cues such as visual and haptic feedback to aid the
high-dimensional search of low energy ligand states around the
receptor [4]–[6]. To allow realtime visual and tactile feedback
in interactive molecular docking, energy and force calculations
need to be performed quickly. The data generated by users as
they manipulate the ligand around the receptor can be later
used to find low energy ligand pathways.

Gamification of interactive molecular docking can enable
the collection of large crowdsourced datasets of ligand con-
formations [7], [8]. As the number of users grow, so does the
probability of finding ligand states near the binding site on the
receptor, possibly leading to improved pathways. Molecular
docking games incorporate game design features (eg. score,
leaderboard) to help users explore the ligand-receptor interac-
tion energy landscape to find new low energy ligand states [7]–
[9]. The need for computationally efficient interactive molecu-
lar docking is greater if these games are distributed to players
who mostly use commodity hardware [7], [8].

As molecules generally change conformations during bind-
ing events, pathways determined from rigid body models may
miss critical information about binding. In particular, close to
the binding site, rigid body docking can sample high energy
states representing atomic collisions. Since such states are
not physical, molecular flexibility is critical to prevent atoms
from overlapping. However, implementing molecular flexibil-
ity in interactive molecular docking can require specialized
hardware [5]. Moving the internal degrees of freedom of
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the molecules can slow down energy calculations, making
interactive docking in commodity hardware prohibitive. There-
fore, implementation of computationally expensive features
in molecular docking games, such as molecular flexibility,
requires novel approaches.

To optimize the search of low energy pathways of ligand
binding, in this paper we demonstrate a proof-of-concept for
mimicking ligand flexibility in rigid body molecular dock-
ing that can run efficiently in commodity hardware. Ligand
flexibility is introduced as an ensemble of distinct rigid
body ligand conformations. This ensemble includes ligand
conformations that are bond rotated from the original docked
ligand conformation. The ability to select different rigid body
models of the ligand during docking adds complexity to
the data at little computational cost. Resulting pathways can
incorporate many different ligand conformations to overcome
energy barriers while docking. Here we test the feasibility
of this method for molecular docking. The path optimization
method is summarized in Figure 1. We start with a roadmap
made of simulated data consisting of thousands of random
ligand samples (in random positions and orientations) around
the known binding site on the receptor. Once a low energy
path is found (Figure 1(a)), the roadmap is updated to exclude
unused samples and to include new samples generated around
the path (Figure 1(b)). A new, lower energy path is then
determined from the new roadmap (Figure 1(c)), and this is
done iteratively until there is no improvement in the pathways,
or no new low energy ligand states are found (Figure 1(d)).
This automated motion planning path optimization technique
aims to emulate user exploration: Users could tend to over-
explore near previously found low energy states. This iterative
search and improvement on the initial low energy pathway
explores more densily the region around the original path.
We find indications that extending rigid body state search
with an ensemble of distinct ligand conformations may allow
more efficient path optimization in difficult areas of the
search space while maintaining the same computational cost
as searches with a single conformation. The benefits of ligand
conformation ensembles in interactive molecular docking will
be examined in future studies with user participation.

II. RELATED WORK

A. Simulation of Ligand-Receptor Kinetics

Proteins rely on molecular flexibility to accomplish their
function and to react to their environment [10]. Receptor
proteins and ligands may change conformation during binding
events. In principle, their interactions and subsequent motions
can be simulated directly in molecular dynamics (MD) sim-
ulations. Molecular dynamics is a physics-based mechanical
simulation of atomic systems [11]. It uses molecular structure
and atom bond connectivity information from experimental
data to simulate dynamics of individual atoms, and molecular
flexibility stems directly from such simulations. Since MD
takes into account the dynamic motion of each atom, which
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Fig. 1: Schematics of our pathway optimization method. (a)
Initial ligand samples (gray circles) and start and goal states
(stars) are added to the roadmap (edges not shown). A low
energy path (dashed black line) is found that connects the start
state to goal state. Ligand states along the path are shown
in black. (b) First optimization iteration: Ligand states not
included in the initial path are discarded. New ligand states
(green diamonds) are sampled in a volume around the original
path (shaded gray area) and a new roadmap is created. (c) A
new low energy path is found (green solid line) for the updated
roadmap that may include samples in the original path (black
circles) and new samples (green diamonds). (d) The procedure
depicted in steps (b) and (c) is repeated: unused states are
discarded, new ligand states are created around the green path
(pink triangles in shaded green area), the roadmap is updated
and and a new path is found (dotted pink line). This is done
until there is no improvement on the path.

is influenced by all other atoms in both the ligand and the
receptor, simulation of receptor-ligand binding comes at a
large computational cost, and pathways analysis that require
long time scales become prohibitive.

However, classical MD simulations can still be useful in
understanding ligand-receptor kinetics. Recent work has used
ensembles of MD trajectories to extract Markov states that
may be involved in ligand binding pathways [12]. Brownian
dynamics coupled with MD methods have also been used
to estimate ligand-receptor kinetics [2]. Other methods have
used metadynamics techniques that apply MD force fields to
explore receptor-ligand kinetics [13]. For some receptor-ligand
systems, metadynamics has been able to not only confirm the
existence of known pathways but also can find new ones [1].

In drug discovery, ensemble-based virtual screening can
combine multiple receptor conformations to make docking site
predictions [14], [15]. While in this paper we use a similar
approach with an ensemble of ligand conformations, here the
docking site is known but pathways to binding are unknown.

B. Interactive Molecular Docking

Interactive molecular docking combines various modes of
feedback including realtime potential energy scoring to guide
a human operator towards finding potentially docked states.



These docking tools can respond with haptic feedback, al-
lowing the operator to feel the potential energy interactions
between molecules [6], [16], [17]. Users can also be immersed
in 3D visual feedback [18]. To enable further exploration
of molecular interactions, high end graphics hardware can
be utilized for realtime receptor flexibility [5]. Interactive
molecular docking can be gamified as a puzzle game. A
docking game can be crowdsourced to expand ligand state
exploration and find better pathways [7]–[9]. This avenue has
also seen success in the context of protein folding [19].

C. Motion Planning with Roadmaps

Molecular docking can be expressed as a motion planning
problem where the task is to find a series of valid state
transitions from an initial state to a goal state. This study uses a
version of the Probabilistic Roadmap method (PRM) [20] that
has been extended to support a rigid body molecular model. In
a PRM, the possible state space (also known as configuration
space) is sampled at random for states that are collision-
free (also known as valid states). Edges are then added if
they evaluate to valid state transitions. Once a roadmap has
been constructed, it can be efficiently queried repeatedly to
produce motion paths. PRMs have been applied to molecular
motions before, notably in the context of protein folding
prediction [21]. Input from a human operator can be combined
with this method to inform the motion planner [22] and, more
specifically, within rigid body molecular docking [16]. Prelim-
inary studies were also done with roadmaps built from human
contributed data in an interactive game environment [7]. The
quality of paths resulting from roadmap methods will depend
on the state samples being a good approximation of the space
and useful for planning in narrow spaces full of obstacles.

D. Path Optimization

Motion paths produced by roadmap methods can be of low
quality in a discrete robotic environment [23], let alone with
complex potential fields as obstacles. Paths can be optimized
to overcome these drawbacks according to various criteria.
In robotics, this may mean smoothing out sharp angular
turns [24], optimizing for sensor coverage [25] or maximiz-
ing clearance from obstacles [23]. Higher quality paths can
also be obtained from PRM methods by using another more
specialized sampling based method after a query has been
performed [26]. Our approach is a similar two-stage method
that uses a second PRM with a dense sampling focused around
the path obtained from the global planner.

E. Robotics Methods in Molecular Binding and Unbinding
Simulations

Molecular docking prediction problems can be investi-
gated with motion planning methods originally designed for
robotics by representing molecules as semi-flexible bodies,
with any flexibility of the molecule represented as articulate
joint degrees of freedom [27]. One approach views ligand
motion pathway planning as a disassembly problem, using
tree-based search methods to determine which flexible degrees

Fig. 2: Model of immunophilin-immunosuppressant molecular
complex used in this study (taken from entry 1FKF from
RCSB). The ligand molecule is seen in blue in its native
(docked) state with the receptor (in tan).

of freedom are important in finding collision-free states away
from the bound state [28], or representing atomic structures as
deformable mesh to reduce dimensionality while minimizing
energy [29]. Individual docked states for challenging structures
can be found using an incremental assembly method [30].
These methods take advantage of algorithms originally de-
signed to plan in high-dimensional spaces to find motions in
the similarly difficult space of molecular interactions.

III. METHODS

A. Molecular Models

A model of the molecular immunophilin and immunosup-
pressant complex (PDB ID 1FKF) [31] is used as an example
in this study (Figure 2). Hydrogen atoms were added to the
model via the “AddH” tool in the molecular visualization
and analysis software Chimera [32]. The final model of the
receptor contains 1663 atoms and the ligand has 126 atoms.

We generate 9 ligand conformations by performing bond
rotations in Chimera on the original native (docked) ligand
conformation extracted from the PDB file. Bond rotations are
performed using the “Adjust Torsions” setting. The ligand
contains 129 bonds, but only up to 9 bonds were selected
for rotation. Each selected bond i can be rotated by a random
angle ∆αi. Table I shows the atomic bond ID and ∆αi values
for each of the non-native ligand conformations (labeled ‘2’
to ‘10’; The native state is labeled ‘1’). The bottom line in
Table I shows the Root Mean Squared Deviation (RMSD)
values for each non-native conformation as compared to the
native ligand state. The native state is not shown on the table
since it has no bond rotations, and its RMSD is zero. The
ensemble of ligand conformations used in this work contains
10 states, including all 9 bond-rotated ligands from Table I
plus the native ligand state. By adding states with conformal
flexibility, we hypothesize that rigid body collisions near the
binding site can be mostly avoided.

B. All-Atom Energy Calculation

To score the quality of individual rigid body states, an all-
atom intermolecular potential energy function is used. Since
only electrostatic and van der Waals potentials are calculated,
scoring can be done fast enough to support even interactive
applications on commodity hardware [7]. The potential energy
is calculated as the sum of energy between all atoms i in a



TABLE I: Identification of individual rotated bonds for each non-native conformation. Each value in the table is the angle ∆αi

by which the original bond i was rotated. Dashes mean that the bond was not rotated in relation to the native ligand state. The
RMSD is calculated relative to the native conformation.

Non-Native Ligand Conformations

Bond ID 2 3 4 5 6 7 8 9 10

C27—C28 110◦ 110◦ - - - 110◦ - - -70◦
C21—C38 -235◦ -235◦ -10◦ 20◦ - -235◦ - -110◦ -
C15—O8 -150◦ -150◦ - - - -150◦ - - -
C10—O6 -33◦ -33◦ - - - -33◦ - - -
C31—O11 -126◦ -126◦ - - - -126◦ - - -
C38—C39 -60◦ -60◦ - - - -60◦ - - -
C26—C27 - -190◦ - - - 114◦ - - -
C28—C29 - - - -15◦ - - 60◦ - -
O11—C45 - - - - 20◦ - - - -

RMSD (Å) 2.03 2.88 0.17 0.32 0.06 3.11 1.00 0.81 1.37

receptor molecule R and all atoms j in a ligand molecule L,
as shown in Equations 1, 2, 3.

Uesp(i, j) = C
qiqj
rij

(1)

Uvdw(i, j) =
√
εiεj

[(
ρi + ρj
rij

)12

− 2

(
ρi + ρj
rij

)6
]

(2)

U =
R∑
i

L∑
j

[Uesp(i, j) + Uvdw(i, j)] (3)

C is the electrostatic constant, qi(j) is the atomic charge
of atom i (or j), rij is the distance between atoms i and
j, εi(j) is the van der Waals well depth parameter of atom
i (or j) and ρi(j) is the van der Waals radius parameter of
atom i (or j). All the amino acid parameters are given by the
Amber99 force field [33]. Ligand parameters were obtained
from Antechamber [34] calculations.

C. Roadmap Construction

This study constructs state transition roadmaps using PRMs,
producing roadmaps that can be efficiently queried for motion
paths (Algorithm 1). Ligand states are generated at random
in a Gaussian distribution N and evaluated according to
their potential energy, sampling a 6-dimensional space of
states x, y, z, p, t, r. Then, edges are formed between states
if the RMSD length is within a threshold, representing a state
transition. Finally, these transitions are weighted according to
the difference in potential energies (Equation 4), allowing a
shortest weighted path algorithm to query for a path between
any two states in the roadmap.

Wij(∆E) =

{
1/ ln(−∆E), if ∆E ≤ −2 kcal/mol
c1∆E + c2, if ∆E > −2 kcal/mol

(4)

The edge weight function (Equation 4) is used to penal-
ize transitions into higher potential energy states while still
differentiating between transitions into lower ones. In this
equation, the constants are c1 = 0.1858 and c2 = 1.8142,

and ∆E = Ej −Ei is the energy difference between the final
(j) and initial (i) states connected by an edge. This expression
for the edge weight function guarantees that all Wij(∆E) > 0.

Construct a roadmap from new samples
Given a set of states in M and edge limit dlimit;
for Each state i in M do

for Each other state j in M do
Let drmsd be the RMSD between i and j;
if drmsd ≤ dlimit then

Find potential energies xi and xj ;
Calculate weight Wij using Equation 4;
Add edge Eij with weight Wij to M ;

end
end

end
Result: M is now a roadmap of edges and states

Algorithm 1: Roadmap Construction

Paths obtained from the initial roadmap are optimized
according to Algorithm 2 by constructing additional roadmaps
of higher density, as illustrated in Figure 1. States that do
not belong to the path are excluded. A new roadmap is
created that includes the states along the path and a new
set of states. These new states are sampled with Gaussian
distributions centered at each original state of the path. In
this path optimization step, the values for µ and σ2 in the
Gaussian distribution N should be smaller than those used
for the initial roadmap. To ensure more optimal states are
considered in the roadmap construction step, states are only
kept if their potential energy is lower than the original state
energy xi. Next, a new roadmap is constructed (Algorithm 1)
and the original query is repeated to find an lower energy path.
Roadmap creation and path optimization steps are iterated as
necessary to continue lowering the pathway energy.

To analyze the effect of multiple ligand states in path opti-
mization, we compare four different scenarios for the addition
of ligand states in roadmap construction. Figure 3 shows a
flowchart representation of the types of roadmaps constructed
in our method. In Figure 3, Top, the two original roadmaps



Initialization step
Let P be input path;
Let N be samples per iteration;
Let F be the available ligand conformation states;
Let c be number of conformations in F ;
Let dlimit be the RMSD edge length limit;

for I iterations do
Sample new lower energy states
Let m be number of states in P ;
Let M be a new empty roadmap;
for Each state i in P do

Let xi be the potential energy of state Pi;
Add Pi to M ;
while M < N

m samples do
Choose S ∈ x, y, z, p, t, r from N (µ, σ2);
Choose f ∈ F from U(1, c);
Calculate potential energy xs of state S, f ;
if xs ≤ xi then

Add S, f to M ;
end

end
end

Construct roadmap with M and dlimit (Algorithm 1);

Find the new path and repeat
Query P1 (start) to Pm (goal) in M ;
Set P to the new path yielded;

end
Result: P is now the optimized path

Algorithm 2: Path Optimization

used in our study: One generated with only native ligand states,
MN , and another generated with all 10 ligand states in the
ensemble, ME . Once low energy paths are determined from
these roadmaps (Figure 1(a), (b)), future roadmap construction
in the optimization iterations (Algorithms 1, 2) will: (1) add
only native states (c = 1, F = {1}) to the original paths
from initial roadmaps, and to future iterations on the optimized
paths (MNN and MEN in Figure 3, Bottom); or (2) add any
ligand state from the ensemble (c = 10, F = {1, ..., 10})
to roadmaps created from the original path, and to future
iterations on the optimized paths (MNE and MEE in Figure 3,
Bottom). The four scenarios we compare are the iterations
represented by MNN , MNE , MEN , and MEE .

IV. RESULTS

To examine the effects of selecting distinct ligand confor-
mation states while exploring the state space of rigid body
molecular docking, a path optimization scheme was applied to
low energy paths obtained from querying two initial roadmaps.

The two orginal roadmaps MN and ME were created by
constructing edges of length no greater than 5Å RMSD be-

Native-
Native 
(MNN)

Native-
Ensemble 

(MNE)

Ensemble-
Native 
(MEN)

Ensemble-
Ensemble 

(MEE)

Initial Roadmaps

Future Iterations on Initial Roadmaps

Single State: 
Native (MN)

Ensemble of 
States (ME)

Fig. 3: Roadmaps used in the pathway optimization method.
Top: Two original roadmaps are created. One roadmap contains
only native conformations of the ligand (MN , left), and
another contains any ligand state from the ensemble of 10
states (ME , right). A low energy path (original path) is found
in each of these roadmaps as shown in Figure 1(a). Bottom:
Future iterations on the initial roadmaps. New samples around
the original pathways of MN and ME are created as shown in
Figure 1(b-d). From the initial roadmaps, 4 scenarios of future
iterations exist: Native-native (MNN ), starting from roadmap
MN and adding new samples that are only in the native con-
formations for all iterations; Native-Ensemble (MNE), starting
from roadmap MN and adding new samples that belong to
the ensemble of 10 ligand states for all iterations; Ensemble-
Native (MEN ), starting from roadmap ME and adding new
samples that are only in the native conformations for all
iterations; Ensemble-Ensemble (MEE), starting from roadmap
ME and adding new samples that belong to the ensemble of
10 ligand states for all iterations.

tween states among 50,000 Gaussian distributed state samples
with a mean around the native state, a translation deviation of
10Å and a rotational deviation of 180° as seen in Figure 4.
States from the roadmap containing only states in the native
conformation (referred to as the “Single-State (Native)”, or
MN Roadmap) are shown in Figure 4, red. States in the
other roadmap comprised of the 10 ligand conformations
chosen uniformly at random (herein called the “Ensemble of
States”, or ME Roadmap) is shown in Figure 4, blue. Most
states obtained with RMSD < 10 Å are high energy states
due to atomic collisions. Edges were weighted according to
Equation 4. Shortest weighted path queries were performed
on the roadmaps to obtain two paths to be analyzed for
optimization. Figure 5(a) shows the original low energy path
in the MN roadmap (black line), and Figure 5(b) shows the
original low energy path in the ME roadmap (black line).

From the original paths, we resampled new ligand states
from a Gaussian distribution using a mean centered around the
states of the original path with a translation standard deviation
of 2.5Å and a rotational standard deviation of 5°. New states
are accepted when they are a potential energy equal to or lesser
than the original state’s energy, and this was repeated until 500
states were found per iteration. A new roadmap is constructed
from these states using an edge limit of 5Å (Algorithm 1) and



Fig. 4: The initial roadmaps (MN and ME in Figure 3, Top) of
our analysis (only states are shown, not edges). Each roadmap
contains 50,000 Gaussian distributed rigid body ligand states.
Ligand states are represented by dots. The intermolecular
potential energy is plotted against the RMSD from known
native state. States were generated with a mean centered
around the native state, 10.0Å in translation deviation and
180° in angular deviation. Single state (native, MN ) roadmap
(red) can be seen against the roadmap made of an ensemble
of conformations (ME), in blue. Most states obtained in
RMSD ∈ [0, 10] Å are high energy collision states and are
not shown in the plot.

the original query is performed iteratively on this new roadmap
to obtain a possibly more optimal path (Algorithm 2).

In this study path optimization was able to find more
energetically feasible paths regardless of the roadmap (4th

iterations shown as dotted lines in Figure 5). The path ob-
tained for the 4th iteration of MNN and MEN (dotted red
lines) is shorter than those obtained in the 4th iteration of
MNE and MEE (dotted blue lines), but with slightly higher
potential energies. This is because non-native conformations
can increase the RMSD distance (up to 3.11Å in this study
with conformation state ‘7’), resulting in fewer edges meeting
the 5 Å limit in the iterative roadmaps as shown in Table II,
which yield fewer shortcuts in the shortest path algorithm.

Path optimizations on MNE and MEE resulted in a slight
reduction of potential energy over optimizations on MNN and
MEN , and the number of samples that had to be evaluated
for potential energy was reduced. The number of evaluations
that had to be performed to obtain 500 acceptable state
samples per iteration are shown in Table II with MNE ,MEE

optimization only requiring about half as many samples by the
4th iteration, as compared to MNN ,MEN respectively (values
shown in bold). This reduces the computation time by almost
6 hours (in the worst case), eliminating a significant amount
of computational cost (on a single core of an Intel Xeon E3-
1240 running at 3.7GHz). Lower potential energies in difficult
locations were more likely to be found when exploring paths
in MNE ,MEE .
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(b) Initial Roadmap: Ensemble of states, ME

Fig. 5: Queries performed on a roadmap built with Gaussian
distributed ligand states. Edges between states are formed if
they are closer than 5.0Å RMSD. The query is performed from
a start state 14.0Å RMSD from the native state.

Even though ligand conformations in MNE ,MEE optimiza-
tions are chosen in an uniformly random distribution, the
histograms in Figure 6 show that the distribution of states with
potential energies low enough to be accepted by Algorithm 2
during the sampling step is not uniform, especially towards
later iterations. States ‘2’, ‘3’, and ‘7’ were common in itera-
tions 3 and 4 of the path optimization. States ‘2’ and ‘7’ were
commonly chosen for later iterations over the MNE roadmaps
(Figure 6a), while ‘3’ and ‘7’ were common in the MNE

roadmaps (Figure 6b). Due to continual path refinement over
subsequent iterations, these later iterations had lower potential
energy barriers. Therefore, in these particular roadmaps, non-
native conformation states with RMSD to native greater than
2 Å aided exploration of challenging state space.

V. CONCLUSIONS

We have shown that providing an ensemble of confor-
mations to support ligand flexibility in rigid body molec-



TABLE II: Number of potential energy samples calculated
while refining paths taken from both roadmaps. These samples
are taken around the states in the original paths in a Gaussian
distribution with 2.5Å deviation for translation and 5.0° devi-
ation for rotation. Samples are taken until there are 500 states
that satisfy potential energy limits that are equal to or lesser
than the original path states, per iteration. Computation time
was recorded on a DELL T3620 MT Precision Workstation
with an Intel Xeon E3-1240 (3.7GHz).

Roadmap Iteration Samples Computation Avg. Edges
Evaluated Time (min) per State

MNN 1 2372 1.0 110
2 11840 5.1 175
3 304526 131.3 192
4 1660565 716.0 171

MNE 1 2461 1.1 77
2 7536 3.2 113
3 273516 117.9 121
4 838231 361.4 107

MEN 1 2593 1.1 107
2 19260 8.3 126
3 146895 63.3 179
4 649615 280.1 194

MEE 1 2150 0.9 78
2 8955 3.9 99
3 95097 41.0 96
4 366425 158.0 112

ular docking can explore regions in the high-dimensional
energy landscape that may be initially unreachable with a
single ligand rigid body conformation. Even though paths
were improved regardless of state selection, the ensemble of
ligand conformations improves performance of the sampler
as it finds new ligand states within decreasing potential en-
ergy constraints. This indicates the possibility of improved
exploration of the energy landscape by users of interactive
molecular docking within the limited computational resources
of commonly available mobile devices.

Figure 7 shows four out of seven states that were chosen
in the 4th iteration of the path optimization of MEE . Even
though the algorithm found low energy paths, these may not
correspond to the correct biological pathways of binding. The
ligand states selected for this work were generated randomly,
as our goal was not to determine biological pathways for
drug discovery, but to demonstrate feasibility of the method.
To guarantee that the paths obtained by the algorithm are
biologically feasible, ligand states should be generated by
a physics-based method such as molecular dynamics, with
individual states identified with Markov state models such as
in [12]. Conversely, large RMSD differences in the final ligand
pathway can be smoothed using methods such as targeted
molecular dynamics.

The performance of exploration with an ensemble of ligand
conformation states is limited by the ability to sample the
conformation space of molecules, and requires a more robust
method to be applicable to general interactive molecular dock-
ing environments. This study only considered ligand flexibility,
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Fig. 6: Composition of ligand conformation states accepted for
each iteration of (a) MNE and (b) MEE path optimizations
(500 each iteration). State ‘1’ is the native conformation state
and ‘2’–‘10’ are the non-native ligand conformation states.
Some iterations showed a heavy preference towards particular
conformation states, particularly states ‘2’, ‘3’, and ‘7’.

but receptor flexibility also has a large impact on docking
pathways. The number of flexible states a human operator can
effectively utilize is also unknown. This work will be applied
to future user studies of interactive docking to understand these
limits and test interfaces for conformation selection.
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(a) State 1 (Start State) (b) State 3 (Conformation ‘9’)
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Fig. 7: States along the path obtained in the 4th iteration
of MEE (7 in total). All queries started with the same state
(a) and ended with the known bound state (d). Intermediate
states along the path are shown in between along with the
conformation state.
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